

INTRO TO DERIVATIVES: OPTIONS

BRAINTEASER!

There are 8 people sitting in a room at an investment bank. 4 of them are traders and 4 of them are bankers. They are split off into 4 teams of 2 for team-building exercises. What is the probability that each group of 2 has 1 trader and 1 banker?

ANSWER: PROBABILITY APPROACH

Select any person to be the first member of the group. 8/8 ways to do this. For their partner there are 4/7 valid people to select. Repeat for 2nd group, with 6/6 ways to select the first person and 3/5 ways to select the 2nd person. Same logic applies for 3rd group, for a total of 4/7 * 3/5 * 2/3 = 24/105 = 8/35. Note that we don't have to worry about the 4th group because there will naturally be 1 banker and 1 trader left if the other groups are valid.

ANSWER: COMBINATIONS APPROACH

The total number of combinations is 8 choose 2*6 choose 2*4 choose 2 divided by 4! because the selection of groups does not require order. This comes out to 105 combinations. The number of valid groups can be thought of as 4*4 for group 1, 3*3 for group 2, 2*2 for group 3. Again divided by 4! because the order does not matter. This comes out to 24 valid combinations, for a total probability of 24/105 = 8/35

WHAT IS A DERIVATIVE?

Derivative

- A derivative is a financial instrument whose value is based on the value of another underlying asset
- When the price of the underlying changes, the value of the derivative also changes

Types of Derivatives

- Forwards/Futures
- Options
- Swaps
- Warrants/Convertibles

KEY DEFINITIONS

Call Option

 An agreement that gives the buyer the right, but not the obligation, to buy an underlying asset at a specified price within a specific time period

Put Option

• An agreement that gives the buyer the right, but not the obligation, to sell an underlying asset at a specified price within a specific time period

OTHER KEY TERMS TO KNOW

- S Price of Underlying Asset
- F Forward (Futures) Price of Underlying Asset
- K Strike (Exercise) Price
- t Time to Expiration
- r Rate of Interest
- σ Volatility
- C Call Price
- P Put Price
- q Dividend Yield

What is the difference between the price of the underlying asset and the strike price?

2 Types of Options

American Options – buyer can exercise the option early, at any point up until expiration

European Options – buyer cannot exercise option early and has to wait until expiration

PAYOFF DIAGRAM FOR BUYING A CALL

PAYOFF DIAGRAM FOR BUYING A PUT

CONCEPT OF MONEYNESS

- Options are heavily dependent on the concept of moneyness – relative position of the price of the underlying asset with respect to the strike price of the option
 - In the Money
 - If expiration were today, the option would have value
 - At the Money
 - Strike price = Spot price
 - Out of the Money
 - If expiration were today, the option would be worthless

WHY PEOPLE TRADE OPTIONS

- Leverage
- Hedging Protected downside risk
- Speculation
- Have a unique view that you can't play with just the underlying asset
 - Delta: betting on the price of the underlying
 - Vega: betting on the volatility of the underlying
 - Theta: collecting the time premium
 - Etc.

SUMMARY OF PAYOFF DIAGRAMS

DIFFERENT STRATEGIES: VOLATILITY STRATEGIES

DIFFERENT STRATEGIES: VOLATILITY STRATEGIES

DIFFERENT STRATEGIES:

How much do you think a call option should be priced if...

- Strike price is 40
- Price of underlying is 50
- Expiration date is in a year

Black-Scholes Value:	10.932	
Stock Price: (in USD)	50	(ex. 31.55)
Exercise Price: (in USD)	40	(ex. 22.75)
Time to maturity: (in years)	1	(ex. 3.5)
Annual risk-free interest rate	1%	(ex. 5%)
Annualized volatility	20%	(ex. 50%)

Black-Scholes Value:	14.963	
Stock Price: (in USD)	50	(ex. 31.55)
Exercise Price: (in USD)	40	(ex. 22.75)
Time to maturity: (in years)	1	(ex. 3.5)
Annual risk-free interest rate	1%	(ex. 5%)
Annualized volatility	50%	(ex. 50%)

How much do you think a put option should be priced if...

- Strike price is 40
- Price of underlying is 40
- Expiration date is in a year

Put Price: **\$2.98**

Put Price: **\$7.66**

PRICING RELATIONSHIPS

- $Max[0, S-K] \le C$
- $C(K_L) > C(K_H)$
- $C(t_2) > C(t_1)$
- $Max[0, K-S] \le P \le K$
- $P(K_L) < P(K_H)$
- $P(t_2) > P(t_1)$
- S, K = spot price, strike price
- K_L , K_H = lower strike, higher strike
- $T_1, T_2 = \text{shorter maturity, longer maturity}$

Intrinsic vs. Extrinsic Value?

IMPACT OF EACH VARIABLE

- What happens to the cost of a call option when the following variables change?
 - Price of underlying increases...
 - Strike price increases...
 - Volatility increases...
 - Time increases...
 - Interest rates increase...
 - Dividends increase...

IMPACT OF EACH VARIABLE

- What happens to the cost of a put option when the following variables change?
 - Price of underlying increases...
 - Strike price increases...
 - Volatility increases...
 - Time increases...
 - Interest rates increase...
 - Dividends increase...

PUT-CALL PARITY

General approach: prices do not provide arbitrage opportunities

Derivation obtained by replicating the payoffs provided by the option using the underlying asset and borrowing/lending. The option payoffs should be priced the same as the replicated payoffs.

The same approach as in pricing futures/forward

PUT-CALL PARITY

 Defines the relationship between the price of a European put and European call of the same class (same strike/underlying asset/expiration date)

PUT-CALL PARITY

$$P + S = C + PV(K)$$

$$C = P + S - PV(K)$$

QUESTIONS?