

OPTIONS 201

BRAINTEASER!

I'm driving out to a resort, which is pretty far away. Luckily, the first three quarters of the distance is all highway driving, but I have to drive the rest on slower local roads. I drive at 60 mph on the highway, but only 20 mph on local roads. What's my average speed for this trip?

ANSWER:

You might think you can just take a weighted average of the two speeds, and conclude the answer is just $\frac{3}{4} \times 60 + \frac{1}{4} \times 20 = 50$ mph, but that's not correct! This is because average speed is calculated by averaging speed over time, not over distance.

Solution:

Let x be the total distance to the resort. The time you spend on the highway is $\frac{\frac{3}{4}x}{60} = \frac{x}{80}$ hours, and the time you spend on the local roads is $\frac{\frac{1}{4}x}{20} = \frac{x}{80}$ hours. Then your average speed is $\frac{x}{x+x} = 40$ mph.

Quantitative Finance Society

SIGN-UP

MACRO | LONG-SHORT | QUANT

Come hear an introduction to quantitative trading and learn more about what SIG does! The trading team will share insights on market making, followed by an open Q&A and networking session.

There will be networking, games, dinner, and swag!

KMEC

2-60

THURSDAY
OCT 19

6:00 PM -8:30 PM

KEY DEFINITIONS

Call Option

 An agreement that gives the buyer the right, but not the obligation, to buy an underlying asset at a specified price within a specific time period

Put Option

• An agreement that gives the buyer the right, but not the obligation, to sell an underlying asset at a specified price within a specific time period

OTHER KEY TERMS TO KNOW

- S Price of Underlying Asset
- F Forward (Futures) Price of Underlying Asset
- K Strike (Exercise) Price
- t Time to Expiration
- r Rate of Interest
- σ Volatility
- C Call Price
- P Put Price
- q Dividend Yield

The forward (F) is more "important" than spot (S). Why?

2 Types of Options

American Options – buyer can exercise option early

European Options – buyer cannot exercise option early and has to wait until expiration

PAYOFF DIAGRAM FOR BUYING A CALL

PAYOFF DIAGRAM FOR BUYING A PUT

EARLY EXERCISE OF AMERICAN PUTS

American Options – buyer can exercise option early

Why would someone ever exercise their option early?

PUT-CALL PARITY

 Defines the relationship between the price of a European put and European call of the same class (same strike/underlying asset/expiration date)

PUT-CALL PARITY

$$P + S = C + PV(K)$$

$$C = P + S - PV(K)$$

THETA

 Change in value of option as you move closer to expiry (time decay)

DELTA

 Change in price of option for every dollar movement in underlying

GAMMA

 Second derivative of delta – measures rate of change in delta

VEGA

 Price sensitivity to 1% change in volatility of underlying

RHO

How sensitive options pricing is to interest rates

VOLATILITY SKEW

- Measures implied vol (demand) of options
- Skew: spot-vol relationship
- Smile: positive vol convexity

